Skip to content

教程

Machine Learning & Deep Learning Tutorials Awesome

Introduction

Interview Resources

Artificial Intelligence

Genetic Algorithms

Statistics

Useful Blogs

Resources on Quora

Kaggle Competitions WriteUp

Cheat Sheets

Classification

Linear Regression

- [Assumptions of Linear Regression](http://pareonline.net/getvn.asp?n=2&v=8), [Stack Exchange](http://stats.stackexchange.com/questions/16381/what-is-a-complete-list-of-the-usual-assumptions-for-linear-regression)

- [Linear Regression Comprehensive Resource](http://people.duke.edu/~rnau/regintro.htm)

- [Applying and Interpreting Linear Regression](http://www.dataschool.io/applying-and-interpreting-linear-regression/)

- [What does having constant variance in a linear regression model mean?](http://stats.stackexchange.com/questions/52089/what-does-having-constant-variance-in-a-linear-regression-model-mean/52107?stw=2#52107)

- [Difference between linear regression on y with x and x with y](http://stats.stackexchange.com/questions/22718/what-is-the-difference-between-linear-regression-on-y-with-x-and-x-with-y?lq=1)

- [Is linear regression valid when the dependant variable is not normally distributed?](https://www.researchgate.net/post/Is_linear_regression_valid_when_the_outcome_dependant_variable_not_normally_distributed)

Logistic Regression

Model Validation using Resampling

Deep Learning

Natural Language Processing

Computer Vision

Support Vector Machine

Reinforcement Learning

Decision Trees

-柴德

- [Wikipedia Artice on CHAID](https://en.wikipedia.org/wiki/CHAID)

- [Basic Introduction to CHAID](https://smartdrill.com/Introduction-to-CHAID.html)

- [Good Tutorial on CHAID](http://www.statsoft.com/Textbook/CHAID-Analysis)

Random Forest / Bagging

Boosting

-AdaBoost

- [AdaBoost Wiki](https://en.wikipedia.org/wiki/AdaBoost), [Python Code](https://gist.github.com/tristanwietsma/5486024)

- [AdaBoost Sparse Input Support](http://hamzehal.blogspot.com/2014/06/adaboost-sparse-input-support.html)

- [adaBag R package](https://cran.r-project.org/web/packages/adabag/adabag.pdf)

- [Tutorial](http://math.mit.edu/~rothvoss/18.304.3PM/Presentations/1-Eric-Boosting304FinalRpdf.pdf)

Ensembles

Stacking Models

Vapnik–Chervonenkis Dimension

Bayesian Machine Learning

Semi Supervised Learning

Optimization

Other Tutorials

  • 有关使用 R 的数据科学教程集,请参阅 this list.

  • 有关使用 Python 的数据科学教程的集合,请参阅 this list.