教程
Machine Learning & Deep Learning Tutorials ¶
-
此存储库包含按主题精选的机器学习和深度学习教程、文章和其他资源列表. 其他很棒的列表可以在这里找到 list.
-
如果您想为此列表做出贡献,请阅读 Contributing Guidelines.
-
Curated list of R tutorials for Data Science, NLP and Machine Learning.
-
Curated list of Python tutorials for Data Science, NLP and Machine Learning.
Introduction¶
-
In-depth introduction to machine learning in 15 hours of expert videos
-
A curated list of awesome Machine Learning frameworks, libraries and software
-
A curated list of awesome data visualization libraries and resources.
-
An awesome Data Science repository to learn and apply for real world problems
-
Machine Learning algorithms that you should always have a strong understanding of
-
Difference between Linearly Independent, Orthogonal, and Uncorrelated Variables
-
Twitter's Most Shared #machineLearning Content From The Past 7 Days
Interview Resources¶
-
41 Essential Machine Learning Interview Questions (with answers)
-
How can a computer science graduate student prepare himself for data scientist interviews?
Artificial Intelligence¶
-
Programming Community Curated Resources for learning Artificial Intelligence
-
MIT 6.034 Artificial Intelligence Lecture Videos, Complete Course
Genetic Algorithms¶
Statistics¶
-
Stat Trek Website - 一个自学统计的专用网站
-
Learn Statistics Using Python - 使用以应用程序为中心的编程方法学习统计
-
Statistics for Hackers | Slides | @jakevdp - Jake VanderPlas 的幻灯片
-
Online Statistics Book - 学习统计学的交互式多媒体课程
-
教程
-
OpenIntro Statistics - 免费PDF教科书
Useful Blogs¶
-
Edwin Chen's Blog - 关于数学、统计、机器学习、众包、数据科学的博客
-
The Data School Blog - 适合初学者的数据科学!
-
ML Wave - 学习机器学习的博客
-
Andrej Karpathy - 一篇关于深度学习和数据科学的博客
-
Colah's Blog - 很棒的神经网络博客
-
Alex Minnaar's Blog - 关于机器学习和软件工程的博客
-
Statistically Significant - Andrew Landgraf 的数据科学博客
-
Simply Statistics - 三位生物统计学教授的博客
-
Yanir Seroussi's Blog - 关于数据科学及其他领域的博客
-
fastML - 机器学习变得简单
-
Trevor Stephens Blog - 特雷弗斯蒂芬斯个人页面
-
no free hunch | kaggle - 关于数据科学所有事物的 Kaggle 博客
-
A Quantitative Journey | outlace - 学习定量应用
-
r4stats - 分析数据科学的世界,并帮助人们学习使用 R
-
Variance Explained - 大卫罗宾逊的博客
-
AI Junkie - 关于人工智能的博客
-
Deep Learning Blog by Tim Dettmers - 让深度学习触手可及
-
J Alammar's Blog- 关于机器学习和神经网络的博客文章
-
Adam Geitgey - 最简单的机器学习介绍
-
Ethen's Notebook Collection - 持续更新机器学习文档(主要是Python3). 内容包括从头开始机器学习算法的教育实施和开源库的使用
Resources on Quora¶
Kaggle Competitions WriteUp¶
Cheat Sheets¶
Classification¶
Linear Regression¶
- [Assumptions of Linear Regression](http://pareonline.net/getvn.asp?n=2&v=8), [Stack Exchange](http://stats.stackexchange.com/questions/16381/what-is-a-complete-list-of-the-usual-assumptions-for-linear-regression)
- [Linear Regression Comprehensive Resource](http://people.duke.edu/~rnau/regintro.htm)
- [Applying and Interpreting Linear Regression](http://www.dataschool.io/applying-and-interpreting-linear-regression/)
- [What does having constant variance in a linear regression model mean?](http://stats.stackexchange.com/questions/52089/what-does-having-constant-variance-in-a-linear-regression-model-mean/52107?stw=2#52107)
- [Difference between linear regression on y with x and x with y](http://stats.stackexchange.com/questions/22718/what-is-the-difference-between-linear-regression-on-y-with-x-and-x-with-y?lq=1)
- [Is linear regression valid when the dependant variable is not normally distributed?](https://www.researchgate.net/post/Is_linear_regression_valid_when_the_outcome_dependant_variable_not_normally_distributed)
-
多重共线性和 VIF
Logistic Regression¶
-
Difference between logit and probit models, Logistic Regression Wiki, Probit Model Wiki
-
Pseudo R2 for Logistic Regression, How to calculate, Other Details
Model Validation using Resampling¶
Deep Learning¶
-
A curated list of awesome Deep Learning tutorials, projects and communities
-
Interesting Deep Learning and NLP Projects (Stanford), Website
-
Understanding Natural Language with Deep Neural Networks Using Torch
-
Introduction to Deep Learning Using Python (GitHub), Good Introduction Slides
-
Video Lectures Oxford 2015, Video Lectures Summer School Montreal
-
神经机器翻译
-
深度学习框架
-
-
咖啡
-
张量流
-
循环网络和 LSTM 网络
-
受限玻尔兹曼机
-
自动编码器:无监督(在设置目标 = 输入后应用 BackProp)
-
卷积神经网络
-
网络表示学习
Natural Language Processing¶
-
A curated list of speech and natural language processing resources
-
Understanding Natural Language with Deep Neural Networks Using Torch
-
主题建模
-
word2vec
-
文本聚类
-
文本分类
-
命名实体识别
-
Kaggle Tutorial Bag of Words and Word vectors, Part 2, Part 3
Computer Vision¶
Support Vector Machine¶
-
比较
-
软件
-
内核
-
SVM 后概率
Reinforcement Learning¶
Decision Trees¶
-
What is entropy and information gain in the context of building decision trees?
-
How do decision tree learning algorithms deal with missing values?
-
Discover structure behind data with decision trees - 生成并绘制决策树以自动找出数据中隐藏的规则
-
不同算法的比较
-
购物车
-
CTREE
-柴德
- [Wikipedia Artice on CHAID](https://en.wikipedia.org/wiki/CHAID)
- [Basic Introduction to CHAID](https://smartdrill.com/Introduction-to-CHAID.html)
- [Good Tutorial on CHAID](http://www.statsoft.com/Textbook/CHAID-Analysis)
-
火星
-
概率决策树
Random Forest / Bagging¶
-
Evaluating Random Forests for Survival Analysis Using Prediction Error Curve
-
Why doesn't Random Forest handle missing values in predictors?
Boosting¶
-
梯度提升机
-
xgboost
-AdaBoost
- [AdaBoost Wiki](https://en.wikipedia.org/wiki/AdaBoost), [Python Code](https://gist.github.com/tristanwietsma/5486024)
- [AdaBoost Sparse Input Support](http://hamzehal.blogspot.com/2014/06/adaboost-sparse-input-support.html)
- [adaBag R package](https://cran.r-project.org/web/packages/adabag/adabag.pdf)
- [Tutorial](http://math.mit.edu/~rothvoss/18.304.3PM/Presentations/1-Eric-Boosting304FinalRpdf.pdf)
Ensembles¶
Stacking Models¶
Vapnik–Chervonenkis Dimension¶
Bayesian Machine Learning¶
Semi Supervised Learning¶
Optimization¶
-
Mean Variance Portfolio Optimization with R and Quadratic Programming
-
Hyperopt tutorial for Optimizing Neural Networks’ Hyperparameters